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ABSTRACT 

The requirements for time-sharing a computer to control and monitor multiple 
experiments in a solid state physics and physical chemistry laboratory are discussed. 
A monitor system, which has been implemented on the IBM 1800, to control multiple 
spectroscopic experiments and collect their data is described. It provides flexible analog 
and digital input/output routines which, using a multilevel interrupt system, operate in a 
background mode once they have been initiated from a foreground program, and a 
priority queuing system to sequence these foreground programs. In addition, provision 
is made for the utilization of the computer on problems not associated with any 
comected experiment. A simplified sample application is presented. 

Research in solid state physics, physical chemistry, and analytical chemistry 
has been sharply influenced in the last decade by the introduction of instruments 
capable of collecting relatively large amounts of data. Very often, the rather sophis- 
ticated and expensive instruments involved remain idle for a large fraction of 
their time because the researchers are engaged in simple but tedious tasks of 
preliminary data reduction and amelioration to separate the meaningful data 
from instrumental corrections and noise. It has long been advocated by numerous 
voices that these tasks are readily accomplished on a digital computer and that in 
addition one can envision quite sophisticated feedback and control. This paper 
describes rudiments of a simple monitor system which is sufficiently powerful to 
accomplish most of these tasks for a chemical physics laboratory and which, 
moreover, relieves the experimenter of almost all the tricky interface programming. 
The system has been designed to take full advantage of the flexibility offered by a 
moderate sized process control computer. 

Before detailed description of this system is undertaken, it is pertinent to describe 
the laboratory for which it has been designed and the problems with which the 
computer will be required to deal. Most of the experiments which are being tied 
to the computer occur in the physics departments of this laboratory. These include 
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spectroscopy in a number of energy ranges (electron paramagnetic resonance, 
far-infrared Fourier-transform spectroscopy, infrared spectroscopy, visible- 
absorption and fluorescence spectroscopy and vacuum ultraviolet reflection 
spectroscopy), studies of electrical transport in photo- and semiconductors, single 
crystal and powder x-ray diffraction, and atomic and molecular cross section 
studies in an ultra-high vacuum manometric experiment. The applications of 
instrument control in our chemistry department are those of a conventional 
analytical chemistry laboratory (infrared spectroscopy, vapor phase chromoto- 
graphy, potentiometric studies). In addition, the laboratory has a very active study 
of industrial process control which involves, inter alia, studies in long distance 
communication between computers and simulation of processes on an analog 
computer connected to the digital computer. It is desirable that none of these 
projects conflict with any other, within the data processing capabilities of the 
computer employed (i.e., no application should be in a pending state at any time 
that the central processing unit is idle). 

Multiple experiments running concurrently require either multiple small data 
processing systems or time-sharing in moderate to large data processing systems. 
Since for many applications the small computers will at one point or another 
require service from a more powerful machine, the former approach does not in 
fact evade the time-sharing problem but merely postpones it. The general time- 
sharing problem in which the number of users is potentially very large and in 
which “instantaneous” service is to be given to each user, is a highly complex 
problem which is being actively studied in a number of centers. To date no simple 
comprehensive system which can be transferred from machine to machine, mutatis 
mutandis, has appeared. If laboratory automation is to be made feasible, it is 
necessary that the time-sharing problem be brought to manageable proportions. 

Our approach to this problem differs from those employed in other laboratories. 
In the first instance the experiments have been analyzed to identify their common 
features and to isolate whatever simplifications occur within their timing require- 
ments. We feel that the ease of programming in FORTRAN more than offsets the 
consequent inefficiency, but that later recoding of key portions of algorithms may 
be necessary. There exists for the IBM 1800 a monitor system designed for large- 
scale process control. With some extension, it seemed suited to laboratory automa- 
tion and was adopted. 

Below, following an analysis of the experimental requirements and their 
implications for the monitor programs, the most relevant features of the IBM 1800 
computer and the TSX (time-shared executive) monitor system are sketched. The 
four programs that constitute the core of the laboratory submonitor are followed 
by a generalized and simplified flow chart particular to the author’s own 
experimental field-electron paramagnetic resonance spectroscopy-as an illustra- 
tion of a user’s program. 
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THE EXPERIMENTS AND THEIR REQUIREMENTS 

For spectroscopic experiments, a number of significant simplifications do occur. 
The purpose of a spectroscopic experiment is generally to find the functional 
dependence of some dependent variable(s) on some controlled variable(s). Very 
often one or more parameters, e.g., temperature, is to be held constant for portions 
of the experiment and changed to new values for subsequent portions. The control- 
led variables are swept in time, but a sweep may be delayed for quite long intervals 
without detriment to the experiment if it is resumed from the same value later. 
The data do not need interpretation during the course of a sweep but may be 
processed after a sweep is completed (a sweep could comprise a very short data 
list if processing is required very soon after data collection). Analog integration to 
improve signal-to-noise ratio is a common feature of spectroscopy and introduces 
a time constant characteristic of the experiment. Fast sampling does not confer 
any statistical advantage for experiments which are intrinsically long-term. 

These numerical and timing characteristics are typical of many types of experi- 
ments besides conventional spectroscopy; they may be all classified as “slow” in 
the time scale appropriate to digital computation. Other common experiments 
seem to divide fairly sharply into those with high data rates (Kc/set) and very 
high data rates (Mc/sec). It should be recognized that the number of data collected 
in any data-gathering cycle has natural upper bounds so that any experiment 
requiring high data rates will be of short duration. It is not unreasonable to dedicate 
the “foreground” of the computer to that experiment during its data-collection 
phase, since this does not conflict with the slow spectroscopic experiments. 
Experiments with very high data rates are beyond the power of commercial compu- 
ters presently available. 

With these simplifications in mind, the design objectives and the method of 
their implementation become almost self-evident. 

(1) That no experiment should use more of the facilities of the central 
processing and arithmetic units of the computer than it requires implies a time- 
sharing system. 

(2) That any experiment has an associated time constant implies that the 
collection of data may be under the control of a timer internal to the computer, 
rather than on the receipt of an interrupt signal at the computer from the experi- 
ment. However, it would be quite simple to extend the monitor described below to 
arrange that some experiments could control the time that their data are gathered, 
and that others depend on the computer for timing. 

(3) Internal to any data-gathering operation, accurate timing is unnecessary 
for spectroscopic experiments. Data points should be taken at intervals equal to or 
greater than the time constant of the experimental apparatus. If the mean interval 
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is greater than the output time constant, the only effect is that the duty cycle of 
the spectroscope is not one hundred percent. For those experiments for which 
real time is the independent variable it is generally adequate to take the data at 
roughly equal intervals and to provide in output tables accurate interval informa- 
tion. Should an experiment in fact require accurately set timing intervals, it does 
lie outside the programming of the monitor operative in this laboratory. However, 
extension to cover this possibility is only a change in data buffer logic, which would 
be neither difficult nor time consuming. 

(4) A system should be open-ended with respect to data set size. This criterion 
is not directly met in the system described; however, only a very small number 
of simple modifications are necessary to modify the size of the data set collected 
in any single collection cycle. Presently, any experiment may make at most 3500 
accesses to the computer and collect up to 14,000 data in any collection cycle. 
These limitations occur because the system uses fixed buffer areas on disk storage. 

(5) The data-collection programs should be open-ended with respect to inclu- 
sion of elementary data-gathering and control operations. The entire monitor 
system should not preclude process-control functions outside those functions 
explicitly provided for. 

(6) Whatever calculation time is not used in the data-collection and control 
functions should be available on a time-shared basis to programs processing the 
output of completed data-collection cycles or to nonprocess programs. This is 
accomplished by assigning the data-gathering program to a permanent area of 
magnetic memory and having it interrupt the job stream whenever a timer expires. 
As a consequence, the data-collection program must occupy minimum possible 
magnetic memory. 

(7) Within the limitations implied by finite processing speed and limited core 
memory and disk storage, the inception and accomplishment of any data-collection 
cycle (any experiment) should proceed in such a fashion that the experimenter is 
not aware of the status of other experiments. 

(8) In these early stages of laboratory automation, flexibility and ease of 
programming are of extreme importance. For almost every case when flexibility 
and efficiency were in conflict, efficiency with respect to either processing speed 
or the use of memory has been sacrificed in the system described. Fortunately, 
for the IBM 1800 used in the present implementation, a monitor system called 
TSX (time-sharing executive) and a FORTRAN compiler were available. In only very 
few instances did we find it necessary to operate outside the facilities that TSX 
provided. It is common that a large fraction of the computer time is involved with 
a small fraction of the code, so that when operating experience is more extensive 
it will probably prove profitable to eliminate most of the inefficiency of FORTRAN 
by recoding key portions of the programs in symbolic machine language. 
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(9) For the experiments considered, ten samples per second seemed the fastest 
data-rate required, and one sample per second was more typical. The data collection 
program is capable of sampling multiple experiments at up to 20 samples per 
second for any or all experiments and has been tested at 50 samples per second. 
At the latter rate, timing begins to be erratic. 

(10) It should be possible at any time to run a nonprocess program by action 
taken at the console of the computer. Further, when all process activity is complete, 
the computer should revert automatically to the nonprocess job stream until 
more process activity is requested. 

(11) If a computer is to service a laboratory with multifarious, continuously 
changing experiments, it should be possible to modify old programs and enter 
new programs without interfering with running experiments. Under TSX, these 
activities are not distinct from those of the previous point. 

(12) To avoid interleaving outputs or inputs of different users, the data 
processing I/O facilities (printer, card reader, plotter) may be accessed from variable 
core only. Interrupt programs should not use these facilities. However, typewriters, 
which are relatively inexpensive, can be dedicated to particular experiments or 
sets of experiments and located at those experiments rather than in the vicinity 
of the computer. They may be used by any program associated with the 
experiment(s). 

Our system is not open-ended with respect to a number of experiments simul- 
taneously in a data collection phase. In San Jose we expect that about fifteen 
experiments will eventually be connected to the computer and that it will be 
unusual that more than six will be in a data-collection phase concurrently. The 
system is designed so that any six of the fifteen may be simultaneously recording 
experimental data and so that any other requests for input activity will be deferred 
until one of the previous six terminates its data collection. 

IBM 1800 COMPUTER AND TSX MONITOR SYSTEM 

For details on the IBM 1800 computer or the TSX system the reader is referred 
to the IBM Systems Specifications manuals. However, in view of the large number 
of options available, a very brief description of the system installed in the San Jose 
Research Laboratory is pertinent, particularly since this hardware configuration 
is adequate, without many superfluous resources, for the number of experiments 
that the monitor is designed to handle. The machine is a general-purpose digital 
computer, with a 2-p set cycle time and 32K core storage memory with word size 
16 bits, supplemented by a multilevel priority interrupt system and a number of 
process input/output terminals for external communication. The machine is equip- 
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ped with a card read-punch, a line printer, several typewriters and a keyboard, a 
Calcomp plotter, 1.5-million words disk storage, and 3 timers (l/8 msec, 1 msec, 
and 8 msec). Nine data channels, operating on a cycle-steal basis, control both the 
data-processing I/O equipment and the process I/O terminals. The latter consist 
of eight groups of 16 bits each of digital input, 16 groups of digital output, two 
S-bit pulse counters, 16 analog outputs, and 64 analog inputs. The 96 priority- 
interrupt terminals are distributed among 24 interrupt 1evels.l In addition to 
external interrupts, there are interrupt signals generated by each I/O device, by 
the timers and by programs explicitly. In addition, the machine is equipped with a 
System/360 channel adapter for direct high-speed machine-to-machine communica- 
tion. Although the programming is not complete, we anticipate using an IBM 
360/50 as a slave to the IBM 1800 to do those calculations for which the smaller 
machine is too slow, or for which better software is available on the bigger 
computer. 

The TSX monitor system provides most of the control functions necessary for 
a time-shared laboratory automation monitor. It consists of two submonitors, a 
nonprocess monitor system which includes an assembler, a FORTRAN compiler, and 
a set of disk utility programs, and a process monitor which controls the sequence 
of tasks in the CPU. The process system director program: 

(1) controls the sequencing and initiates the loading and execution of process 
programs; 

(2) controls the time-sharing of variable core between process and nonprocess 
programs; 

(3) automatically determines the type of each interrupt and transfers control 
to the proper servicing program; 

(4) provides error messages and executes a specified recovery procedure 
whenever an execution error occurs. 

In addition, the system provides an extensive set of subroutines for simplified 
control of the process input/output hardware. Many of the TSX functions may be 
referenced explicitly from users’ FORTRAN programs. The most important of these 
are listed in a simplified form in Table I, to illustrate the facilities already available 
in TSX. 

When the IBM 1800 is operating under TSX, the core memory is divided logically 
into two sections, called skeleton and variable core. The skeleton contains the 
portions of the operating system which must be permanently available, those 
interrupt subprograms which may be time-shared with the mainline program and 
a skeleton COMMON area. Variable core is used for the job-stream of mainline 

1 48 interrupt terminals distributed among 8 levels would be adequate. 
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programs. Interrupts are processed either by the skeleton interrupt routines, 
without overwriting variable memory, or by temporarily replacing the current 
mainline program with an interrupt core-load. 

TABLE I 

TSX &BROUTTNES WHICH MAY BEREFERRNCED FROM APPLICATIONS PROGRAMS 

CHAIN (NAME) 

QUEUE (NAME, P) 

VIAQ 

LEVEL (I) 

INTEX 

TIMER (SUB, I, J) 

CLOCK Q 

SHARE (I) 

ENDTS 

AIS (I, J)” 

DO (I, 9” 

DAC (I, J) 

DI (I, J)” 

The program “NAME” is loaded and executed. 

The program “NAME” is entered into the process job stream queue 
with priority P for future execution, 

The highest priority program in the queue is loaded and executed. 

An interrupt at level I is entered. 

In an interrupt servicing program, completion of the service is 
recorded. 

After the timer “I” has run “J” intervals, the subprogram “SUB” 
is executed. 

The real time “I” is recorded. 

Devote an interval “I” to the nonprocess job stream. 

Terminate action in the nonprocess job stream at once. 

Analog input several points sequentially. 

Digital output to several addresses. 

Analog output to several addresses. 

Digital input from several addresses. 

(i Here “I” is a control parameter, and “7 is an array containing the input or output addresses 
and the data transmitted. 

THE LABORATORY AUTOMATION SUBMONITOR 

The primary functions of a computer monitor program, supervision of priorities 
and sequencing of programs, and provision of assemblers, compilers, and program 
loaders, are adequately met by the TSX monitor. In addition, a special-purpose 
monitor should provide flexible input/output control programs and a powerful 
subroutine library appropriate to the problems anticipated. It is extremely 
important that the subroutines be both flexible and easy to use if most of the users 
are scientists with limited experience and less interest in programming. This paper 
deals most particularly with the data-collection functions of the nucleus of a new 
laboratory automation monitor with only limited discussion of the subprogram 
library which has been and is being prepared in this laboratory. 
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Four important programming principles--dynamic allocation, preservation of a 
status record for each time-shared program, concatenation, and modularity of 
tasks-are fundamental to the input/output routines described below and are 
extremely useful guides in the related programming to be done by individual users. 
First of all, there must be a dynamic allocation algorithm for those computer 
resources that are in short supply. Timers, core buffers, and disk record buffers 
are allocated on request and made available for future requests as soon as possible 
after the completion of a timed input/output sequence in the monitor described 
here. The allocation of each of these facilities is maintained in a small data array 
in the skeleton area of core storage. The logic of these arrays is indicated in lines 
78 to 111 of Fig. 1. The subroutine which collects the data for multiple experiments 
must remember the current status of each collection cycle. These records 
are maintained in the COMMON region denoted at the bottom of the 
figure. 

Without a detailed knowledge of each experiment, it is not possible to fix in 
advance the sequence of operations required, the timing or number of accesses 
to the experiment, or a number of other parameters associated with any access to 
an experiment. However, one can easily identify the small number of operational 
modules from which, if concatenation of modules is allowed, sufficiently flexible 
strings can be constructed to satisfy quite complicated sequences of input/ouput 
operations. In fact, such a logical structure is very similar to modern techniques in 
analog logical circuitry, in which a relatively small number of operational units 
(adders, integraters, multiplying circuits) are hooked up to provide more compli- 
cated transfer functions. The design of digital computers itself uses the same 
principles of modularity and concatenation. The modularity confers the additional 
advantage that, should the program not provide some necessary function, it is 
quite easy to add appropriate modules. In Fig. 1, lines 31-72, some of the modular 
elements are identified. The first group of elements provides the facility to sweep 
a set of independent variables with equal increments. The second set permits 
output from tabular data prepared before the initiation of an I/O cycle. Operation 
8 is designed to reset a motor equipped with a sensing potentiometer with the 
computer closing the servomechanism loop. Operations 9 and 10 provide for analog 
input, with and without time-averaging [ 11. The next group of operations is provided 
to supplement the time-averaging data collection by allowing an output variable 
to be incremented only after a specified number of data points have been collected. 
The final operation provides an interval timer to give precise sampling intervals 
to experiments in real time. 

The core of the laboratory automation sub-monitor is a set of four programs 
operating within TSX. The central routine, DO10 (Do Input/Output), is a skeleton 
subprogram entered when a timer or timers expire and accomplishing a series of 
process input/output operations determined by a command string stored in the 
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skeleton common area of the main computer memory. Subroutine TIMR, also 
stored in the skeleton area, uses one of the hardware timers to provide DO10 with 
multiple software timers. Each software timer may be set to expire at integral 
multiples of the basic timing interval, 50 msec. Subprogram IN10 (Initiate Input/ 
Output) is automatically loaded with the user’s mainline program. It provides a 
very simple interface to initiate DOIO, assigns a timer and buffers as necessary, 
checks the validity of the input data, and stores in the skeleton common area the 
data required by DOIO. The final routine, EXIO (Exit from Input/Output), 
terminates any I/O sequence gracefully, releases the timer and buffers associated 
for use by subsequent requests for service, and enters into the process job stream 
queue a user’s program which presumably interprets and outputs the data collected. 
In these programs the primary identifier of the tasks to be done when any software 
timer expires is the software timer number itself. Associated with each timer is a 
short memory block in the skeleton area. This block contains a fifteen-word 

Ddsrmlnr oprotion, 

Input 
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If thb core buffer Is full, 
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I output 
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If the EWI buftw IS doplated. 
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I-rItl 

I-3? 
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FIG. 2. Simplified logical flow for DO10 (Skeleton interrupt subroutine servicing programmed 
interrupt level 12) DO10 is entered when one or more timers expire. 
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command string, a fifteen-word device-address and direct-data table, and a two- 
word identification of the program to be queued at the end of the cycle. In addition, 
a nine-word table is used to associate memory and disc storage buffers with the 
timer and to maintain a current status record of the data being processed by the 
buffer. Simplified flow charts of the four programs appear in Figs. 2-5. Details of 
the input data for the initiation program occur in Fig. 1. 

Entry 

FIG. 3. Logical flow for TIMR (Skeleton subroutine at interrupt priority level 0) TIMR 
is entered whenever the l-msec hardware timer expires. 

Besides the repetitive timed I/O package, the submonitor includes a set of quite 
simple programs to permit forced changes in program sequencing from the com- 
puter console. Normally, the sequencing is entirely automatic; at the completion 
of any mainline program the next one in the program queue is initiated. If there is 
no process program in the queue, a few minutes is devoted to the nonprocess 
jobstream. However, from the console we may start interrupt programs which: 

(1) abort the present nonprocess job in favor of the next nonprocess job; 

(2) terminate nonprocess work immediately; 

(3) devote a few minutes, starting at the completion of the current process 
job, to nonprocess work; or 

(4) enter into the process job-stream queue a desired program with a desired 
priority, 

Of course, whenever either process or nonprocess work is forcibly terminated, its 
current status is saved in disk storage, so that it can be resumed later. 
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FIG. 4. Simplified logical flow for IN10 (Subprogram loaded with program in variable 
core). 
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FIG. 5. Simplified logic flow for EXIO (Interrupt core load servicing programmed interrupt 
level 22) EXIO is entered when one or more repetitive timed I/O sequences is complete. 

A USER'S PROGRAM 

As an example of an application of this time-sharing monitor system, we present 
drastically simplified logical flow charts of programs to accomplish the tedious 
initial phases of data collection for electron paramagnetic resonance (EPR) of 
magnetic centers in single crystal samples. These preliminary experiments are 
performed to ascertain whether or not a sample has a magnetic impurity and to 
determine the chemical nature and location of the magnetic site by observation of 
the angular dependence of line positions. As it has been performed manually in 
the past, a typical experiment involves a hundred or more sweeps of 10-30 minute 
duration each, with detection time constants of the order of one second. Between 
sweeps it is often necessary to adjust the controls of the output detector circuits 
or to change the orientation of the applied magnetic field. Single crystals seem to 
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accept desired magnetic dopants only reluctantly, so that a negative experiment is 
more common than a positive one. We seek to escape these uninteresting phases 
of the researches. Since only rudimentary feedback from the results is involved in 
adjusting the detector, this problem was one for which significant effort could be 
saved without elaborate programming. Much more significant than the extra ease 
of the experiment is that the computer makes it possible to maintain a uniformly 
high-quality experiment with more complete records than have been common in 
the past. 

The interface between the spectrometer and the computer is relatively simple 
compared to the large number of controls available on the spectrometer. It includes 
all those signals and controls which are commonly modified during the course of an 
experiment to present and optimize the output data. These include digital control 
of the magnetic field, analog sensing of the output of a phase-sensitive detector, 
digital control of the gain, time constant and modulation amplitude of the same 
detector, a positioning mechanism for a 12-in. rotating electromagnet, and analog 
outputs to an X-Y recorder in the laboratory. Most of these controls are used in 
the simple search for signals, but we anticipate that they are also adequate 
for some of the more sophisticated control programs planned for the 
future. 

The organization of this user’s program is quite similar to that of the laboratory 
automation submonitor itself. The tasks to be performed include data-collection 
cycles carried out by DOIO. During these it is unnecessary that the main program 
be resident in variable core. Consequently all data and control arrays are not 
presumed to be saved in core memory but are stored in disk files, and the program 
uses variable core only during its data-processing phases. For this program the 
command string is conveniently read from a set of input cards. Since it is not possi- 
ble to predict when the next elements of the command string may be required, 
the entire string is stored in disk storage by an initiation program which is completed 
before the first task is undertaken. The initiation program (Fig. 6) provides the 
additional opportunity of generation of a relatively long command string from a 
compact set of data entered in a format convenient to the experimenter. For the EPR 
spectrometer a typical data input deck has 12 cards which generate commands 
for 48 hours of searches for spectra. 

A more detailed description of the EPR system will be deferred for future publica- 
tion. In its present form, the program (Fig. 7) includes modules to reset the magnetic 
field, to record a spectrum with or without time-averaging, to plot a spectrum, to 
adjust for base-line drift, to locate absorption lines, to readjust the detector 
circuits on the basis of previous results, and to set the magnetic field direction. 
Of course, this program is open-ended so that other modules of instructions may 
be added if and when desired. Consequently it could, mutatis mutandis, control 
spectroscopic experiments other than electron paramagnetic resonance. 
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FIG. 6 (left). Logic flow for EPR preliminary data collection initiation. 
FIG. 7 (right). Logic flow for EPR preliminary data collection execution. 

A COMPARISON 

It is pertinent to compare the present system to an extant time-sharing laboratory 
monitor. This is much to indicate the similarities of these systems, which may be 
characteristic of many of the systems which will be designed in the near future, as 
to illuminate the significant differences. Beaucage et al. [2] have described a time- 
sharing monitor implemented on an SDS 920 for the control of multiple neutron- 
diffraction spectrometers at Brookhaven National Laboratory. The most striking 
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change in the present system, that the individual experiments are multifarious, is 
quite superfical from the point of view of the computer since, given programming 
with the flexibility of a modular system, all the experiments we have considered 
are very similar. However, most of our applications are for instruments with the 
data characteristics of a scanning spectrometer, which are very different from those 
of crystal-diffraction spectrometers. The latter were, even before the impact of 
digital computation, intrinsically digital devices, whose data handling requirements 
may be contrasted with the requirements described in the second section of this 
paper. The primary scaling in a neutron-diffraction spectrometer is done in a counter 
external to the computer, so that the time scale for transferring data can be measur- 
ed in seconds or longer, rather than in fractions of a second. However, when a 
“point” (angles plus count) has been collected, it is usually necessary to perform 
some short computations before resumption of the experiment. The total data 
transmitted to or from the experiment is measured in hundreds or thousands of 
words, rather than the tens or hundreds of thousands of words transmitted by an 
EPR spectrometer. Consequently, in the system at Brookhaven, interrupts asso- 
ciated with data transfer generally originate in the experiment. At San Jose, since 
it is not common that much control action need be taken before a file of data are 
collected, timed interrupts become normal and externally generated interrupts the 
exception rather than the rule. At the present our external interrupts are usually 
associated with programs that require core-load interchanges which may themselves 
take of the order of a second to perform. The timed interrupts originate in a timer 
internal to the computer. Should it prove necessary, it would be quite simple to 
replace one or more of these with external interrupts, which could either be external 
timer(s) or other device(s), so that to make this system operate in a similar 
fashion to that at Brookhaven would be quite feasible, although perhaps not very 
efficient. 

The sequencing between data reduction tasks is quite different in the two systems. 
The Brookhaven facility sequences between main-line programs by polling. Since 
the polling operation itself is quite fast, it is probably not significantly different in 
practice from the more sophisticated queuing operation provided by TSX as far 
as the efficiency of the computer is concerned. It does not, however, provide a 
priority scheme for main-line core loads, which may not be a serious deficiency 
for experiments as similar as the ones at Brookhaven, but is an undesirable 
restriction in the environment of San Jose. The limitation of 30 seconds for each 
user program is quite intolerable at San Jose (e.g., to plot, with axes and labels, 
a large data file might take 5 minutes). A most important feature of the priority 
queuing system is that we are able to provide a researcher who wishes to run a 
nonprocess calculation from the console with a very high priority, on the assump- 
tion that his time is more valuable than that of a laboratory instrument which may 
be running untended. While he may be engaged in debugging a new program in the 
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foreground, all those data-collection and control functions which have been 
started will continue in the background, but the intervening data-reduction 
programs will be delayed until the programmer no longer requires operations at 
the console. Alternatively, if any experiment requires data-reduction and initiation 
of new data-collection phases with priority exceeding that of console operation, 
this type of service can be provided with an interrupt core-load. 

In two respects the computer hardware described by Beaucage seems inadequate 
for the control of multiple scanning spectrometers. The core memory and drum 
storage allocation for each experiment is roughly what we require for a single 
spectral scan. The price of the ease and flexibility of FORTRAN programming is that 
the programs tend to become quite bulky, both because of compiler inefficiency 
and because we become more elaborate with easier programming. Our monitor 
system is designed to run with a two-disk system, so that we will have a million 
words of pseudo-random access memory available for programs and temporary 
data files. We plan to handle large permanent files either by transferring them to 
an IBM 360/50 via a channel-to-channel adapter or by transferring them to a 
temporarily mounted third disk, at the option of the experimenter. Because 
many of the programs servicing interrupts are much more extensive than those 
described by Beaucage, they necessarily contain output messages, so that we find 
it necessary to provide, as well as the line printer, multiple output typewriters. 
While these are relatively slow, they are inexpensive and may be placed in the 
laboratories, which are as far as 500 feet from the computer. 

DISCUSSION 

A laboratory automation monitor system which provides a powerful timed data- 
collection and control facility for multiple experiments and most of the time-sharing 
bookkeeping to maintain a parallel conventional batch-processing job-stream 
has been described. It has been designed primarily for experiments of the type 
characterized by scanning spectrometers, which represent a large class common to 
physics and chemistry. At the same time, it does not preclude that a variety of 
experiments outside this explicit scope be time-shared with the other activities. 
In particular, experiments with higher data rates may be handled in a burst mode. 
The contrast between the sequencing method for slow experiments and that for 
fast experiments is analogous to that between multiplexor and selector channels 
on modern digital computers. 

Inevitably, in the design of a system with the complexity of the present one, there 
arise a number of alternatives whose consequences are either not clear or not very 
different. As these were encountered, they were dealt with in such a manner that to 
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interchange alternative solutions is a simple exercise. For the external interface 
operations modularity combined with concatenation provides the necessary 
facility. Many of the parameters of the timed I/O programs, such as the number 
of timers and the number of buffers, can be easily changed. We have chosen to 
enslave the experiments during their data-collection phase to timers internal to the 
computer, but this choice may be replaced by data collection controlled by 
interrupt signals originating at the experiment. It is not, however, possible to 
guarantee to any experimentalist that his interrupt signals will be instantaneously 
serviced. This possibly unpalatable restriction does not depend on the system 
described above, but is an inevitable consequence of time-sharing a computer for 
multiple tasks. 

The advantages and difficulties of time-sharing a single computer are quite well 
known. The most serious danger is that of spurious interaction between unrelated 
experiments. Certain timing delays are inevitable and we expect that programming 
mistakes on the part of individual experimenters will provoke heated interchanges 
in the first few months of operation of our system. In any installation it is necessary 
that the allocation of physical resources, e.g., data-file areas on disk, and interrupt 
and queuing priorities are under the control of a single individual who can correlate 
and compromise conflicting requirements. One disadvantage indicated by Beau- 
cage [2], that individual spectrometers are dependent on the reliability of the 
central computer, can in many cases be avoided easily by maintaining the present 
stand-alone capability for the spectrometers. However, it is not unlikely that the 
aid lent by computers will be so significant that experimenters gradually will 
become reluctant to continue the experiment until an ailing computer is rejuvenated. 
One of the most insistent arguments against time-sharing a single large facility has 
been the estimate that it might take many man-years to provide the necessary 
programming. With the FORTRAN compiler and the TSX monitor system already 
available, the system described in this paper has required roughly two man-months 
to complete. 

All too often computer systems have been designed without an adequate back- 
ground or understanding of the problems or systems to which they are directed. 
The balance between insufficient generality and overelaborate proliferation 
continues to be elusive. I have attempted to reach what I consider to be the middle 
ground with a system designed neither for my own experiment alone, nor for all 
experiments under all circumstances, but for the set of experiments and circum- 
stances prevalent today in this laboratory. Insofar as it is typical of other labora- 
tories, the system may be useful in them. Possibly the programs described here 
have a range of usefulness beyond the disciplines for which they have been 
provided. In any case, the programming principles that made this project so easy 
and which I have attempted to identify explicitly should have a very general 
applicability. 
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