
JOURNAL OF COMPUTATIONAL PHYSICS 2,255-273 (1968)

A Simple Time-Sharing Monitor System for Laboratory Automation

H. M. GLADNEY

IBM San Jose Research Laboratory, San Jose, California 95114

ABSTRACT

The requirements for time-sharing a computer to control and monitor multiple
experiments in a solid state physics and physical chemistry laboratory are discussed.
A monitor system, which has been implemented on the IBM 1800, to control multiple
spectroscopic experiments and collect their data is described. It provides flexible analog
and digital input/output routines which, using a multilevel interrupt system, operate in a
background mode once they have been initiated from a foreground program, and a
priority queuing system to sequence these foreground programs. In addition, provision
is made for the utilization of the computer on problems not associated with any
comected experiment. A simplified sample application is presented.

Research in solid state physics, physical chemistry, and analytical chemistry
has been sharply influenced in the last decade by the introduction of instruments
capable of collecting relatively large amounts of data. Very often, the rather sophis-
ticated and expensive instruments involved remain idle for a large fraction of
their time because the researchers are engaged in simple but tedious tasks of
preliminary data reduction and amelioration to separate the meaningful data
from instrumental corrections and noise. It has long been advocated by numerous
voices that these tasks are readily accomplished on a digital computer and that in
addition one can envision quite sophisticated feedback and control. This paper
describes rudiments of a simple monitor system which is sufficiently powerful to
accomplish most of these tasks for a chemical physics laboratory and which,
moreover, relieves the experimenter of almost all the tricky interface programming.
The system has been designed to take full advantage of the flexibility offered by a
moderate sized process control computer.

Before detailed description of this system is undertaken, it is pertinent to describe
the laboratory for which it has been designed and the problems with which the
computer will be required to deal. Most of the experiments which are being tied
to the computer occur in the physics departments of this laboratory. These include

255

58 1 b/3-4

256 GLADNEY

spectroscopy in a number of energy ranges (electron paramagnetic resonance,
far-infrared Fourier-transform spectroscopy, infrared spectroscopy, visible-
absorption and fluorescence spectroscopy and vacuum ultraviolet reflection
spectroscopy), studies of electrical transport in photo- and semiconductors, single
crystal and powder x-ray diffraction, and atomic and molecular cross section
studies in an ultra-high vacuum manometric experiment. The applications of
instrument control in our chemistry department are those of a conventional
analytical chemistry laboratory (infrared spectroscopy, vapor phase chromoto-
graphy, potentiometric studies). In addition, the laboratory has a very active study
of industrial process control which involves, inter alia, studies in long distance
communication between computers and simulation of processes on an analog
computer connected to the digital computer. It is desirable that none of these
projects conflict with any other, within the data processing capabilities of the
computer employed (i.e., no application should be in a pending state at any time
that the central processing unit is idle).

Multiple experiments running concurrently require either multiple small data
processing systems or time-sharing in moderate to large data processing systems.
Since for many applications the small computers will at one point or another
require service from a more powerful machine, the former approach does not in
fact evade the time-sharing problem but merely postpones it. The general time-
sharing problem in which the number of users is potentially very large and in
which “instantaneous” service is to be given to each user, is a highly complex
problem which is being actively studied in a number of centers. To date no simple
comprehensive system which can be transferred from machine to machine, mutatis
mutandis, has appeared. If laboratory automation is to be made feasible, it is
necessary that the time-sharing problem be brought to manageable proportions.

Our approach to this problem differs from those employed in other laboratories.
In the first instance the experiments have been analyzed to identify their common
features and to isolate whatever simplifications occur within their timing require-
ments. We feel that the ease of programming in FORTRAN more than offsets the
consequent inefficiency, but that later recoding of key portions of algorithms may
be necessary. There exists for the IBM 1800 a monitor system designed for large-
scale process control. With some extension, it seemed suited to laboratory automa-
tion and was adopted.

Below, following an analysis of the experimental requirements and their
implications for the monitor programs, the most relevant features of the IBM 1800
computer and the TSX (time-shared executive) monitor system are sketched. The
four programs that constitute the core of the laboratory submonitor are followed
by a generalized and simplified flow chart particular to the author’s own
experimental field-electron paramagnetic resonance spectroscopy-as an illustra-
tion of a user’s program.

TIME-SHARING LABORATORY AUTOMATION 257

THE EXPERIMENTS AND THEIR REQUIREMENTS

For spectroscopic experiments, a number of significant simplifications do occur.
The purpose of a spectroscopic experiment is generally to find the functional
dependence of some dependent variable(s) on some controlled variable(s). Very
often one or more parameters, e.g., temperature, is to be held constant for portions
of the experiment and changed to new values for subsequent portions. The control-
led variables are swept in time, but a sweep may be delayed for quite long intervals
without detriment to the experiment if it is resumed from the same value later.
The data do not need interpretation during the course of a sweep but may be
processed after a sweep is completed (a sweep could comprise a very short data
list if processing is required very soon after data collection). Analog integration to
improve signal-to-noise ratio is a common feature of spectroscopy and introduces
a time constant characteristic of the experiment. Fast sampling does not confer
any statistical advantage for experiments which are intrinsically long-term.

These numerical and timing characteristics are typical of many types of experi-
ments besides conventional spectroscopy; they may be all classified as “slow” in
the time scale appropriate to digital computation. Other common experiments
seem to divide fairly sharply into those with high data rates (Kc/set) and very
high data rates (Mc/sec). It should be recognized that the number of data collected
in any data-gathering cycle has natural upper bounds so that any experiment
requiring high data rates will be of short duration. It is not unreasonable to dedicate
the “foreground” of the computer to that experiment during its data-collection
phase, since this does not conflict with the slow spectroscopic experiments.
Experiments with very high data rates are beyond the power of commercial compu-
ters presently available.

With these simplifications in mind, the design objectives and the method of
their implementation become almost self-evident.

(1) That no experiment should use more of the facilities of the central
processing and arithmetic units of the computer than it requires implies a time-
sharing system.

(2) That any experiment has an associated time constant implies that the
collection of data may be under the control of a timer internal to the computer,
rather than on the receipt of an interrupt signal at the computer from the experi-
ment. However, it would be quite simple to extend the monitor described below to
arrange that some experiments could control the time that their data are gathered,
and that others depend on the computer for timing.

(3) Internal to any data-gathering operation, accurate timing is unnecessary
for spectroscopic experiments. Data points should be taken at intervals equal to or
greater than the time constant of the experimental apparatus. If the mean interval

258 GLADNEY

is greater than the output time constant, the only effect is that the duty cycle of
the spectroscope is not one hundred percent. For those experiments for which
real time is the independent variable it is generally adequate to take the data at
roughly equal intervals and to provide in output tables accurate interval informa-
tion. Should an experiment in fact require accurately set timing intervals, it does
lie outside the programming of the monitor operative in this laboratory. However,
extension to cover this possibility is only a change in data buffer logic, which would
be neither difficult nor time consuming.

(4) A system should be open-ended with respect to data set size. This criterion
is not directly met in the system described; however, only a very small number
of simple modifications are necessary to modify the size of the data set collected
in any single collection cycle. Presently, any experiment may make at most 3500
accesses to the computer and collect up to 14,000 data in any collection cycle.
These limitations occur because the system uses fixed buffer areas on disk storage.

(5) The data-collection programs should be open-ended with respect to inclu-
sion of elementary data-gathering and control operations. The entire monitor
system should not preclude process-control functions outside those functions
explicitly provided for.

(6) Whatever calculation time is not used in the data-collection and control
functions should be available on a time-shared basis to programs processing the
output of completed data-collection cycles or to nonprocess programs. This is
accomplished by assigning the data-gathering program to a permanent area of
magnetic memory and having it interrupt the job stream whenever a timer expires.
As a consequence, the data-collection program must occupy minimum possible
magnetic memory.

(7) Within the limitations implied by finite processing speed and limited core
memory and disk storage, the inception and accomplishment of any data-collection
cycle (any experiment) should proceed in such a fashion that the experimenter is
not aware of the status of other experiments.

(8) In these early stages of laboratory automation, flexibility and ease of
programming are of extreme importance. For almost every case when flexibility
and efficiency were in conflict, efficiency with respect to either processing speed
or the use of memory has been sacrificed in the system described. Fortunately,
for the IBM 1800 used in the present implementation, a monitor system called
TSX (time-sharing executive) and a FORTRAN compiler were available. In only very
few instances did we find it necessary to operate outside the facilities that TSX
provided. It is common that a large fraction of the computer time is involved with
a small fraction of the code, so that when operating experience is more extensive
it will probably prove profitable to eliminate most of the inefficiency of FORTRAN
by recoding key portions of the programs in symbolic machine language.

TIME-SHARING LABORATORY AUTOMATION 259

(9) For the experiments considered, ten samples per second seemed the fastest
data-rate required, and one sample per second was more typical. The data collection
program is capable of sampling multiple experiments at up to 20 samples per
second for any or all experiments and has been tested at 50 samples per second.
At the latter rate, timing begins to be erratic.

(10) It should be possible at any time to run a nonprocess program by action
taken at the console of the computer. Further, when all process activity is complete,
the computer should revert automatically to the nonprocess job stream until
more process activity is requested.

(11) If a computer is to service a laboratory with multifarious, continuously
changing experiments, it should be possible to modify old programs and enter
new programs without interfering with running experiments. Under TSX, these
activities are not distinct from those of the previous point.

(12) To avoid interleaving outputs or inputs of different users, the data
processing I/O facilities (printer, card reader, plotter) may be accessed from variable
core only. Interrupt programs should not use these facilities. However, typewriters,
which are relatively inexpensive, can be dedicated to particular experiments or
sets of experiments and located at those experiments rather than in the vicinity
of the computer. They may be used by any program associated with the
experiment(s).

Our system is not open-ended with respect to a number of experiments simul-
taneously in a data collection phase. In San Jose we expect that about fifteen
experiments will eventually be connected to the computer and that it will be
unusual that more than six will be in a data-collection phase concurrently. The
system is designed so that any six of the fifteen may be simultaneously recording
experimental data and so that any other requests for input activity will be deferred
until one of the previous six terminates its data collection.

IBM 1800 COMPUTER AND TSX MONITOR SYSTEM

For details on the IBM 1800 computer or the TSX system the reader is referred
to the IBM Systems Specifications manuals. However, in view of the large number
of options available, a very brief description of the system installed in the San Jose
Research Laboratory is pertinent, particularly since this hardware configuration
is adequate, without many superfluous resources, for the number of experiments
that the monitor is designed to handle. The machine is a general-purpose digital
computer, with a 2-p set cycle time and 32K core storage memory with word size
16 bits, supplemented by a multilevel priority interrupt system and a number of
process input/output terminals for external communication. The machine is equip-

260 GLADNEY

ped with a card read-punch, a line printer, several typewriters and a keyboard, a
Calcomp plotter, 1.5-million words disk storage, and 3 timers (l/8 msec, 1 msec,
and 8 msec). Nine data channels, operating on a cycle-steal basis, control both the
data-processing I/O equipment and the process I/O terminals. The latter consist
of eight groups of 16 bits each of digital input, 16 groups of digital output, two
S-bit pulse counters, 16 analog outputs, and 64 analog inputs. The 96 priority-
interrupt terminals are distributed among 24 interrupt 1evels.l In addition to
external interrupts, there are interrupt signals generated by each I/O device, by
the timers and by programs explicitly. In addition, the machine is equipped with a
System/360 channel adapter for direct high-speed machine-to-machine communica-
tion. Although the programming is not complete, we anticipate using an IBM
360/50 as a slave to the IBM 1800 to do those calculations for which the smaller
machine is too slow, or for which better software is available on the bigger
computer.

The TSX monitor system provides most of the control functions necessary for
a time-shared laboratory automation monitor. It consists of two submonitors, a
nonprocess monitor system which includes an assembler, a FORTRAN compiler, and
a set of disk utility programs, and a process monitor which controls the sequence
of tasks in the CPU. The process system director program:

(1) controls the sequencing and initiates the loading and execution of process
programs;

(2) controls the time-sharing of variable core between process and nonprocess
programs;

(3) automatically determines the type of each interrupt and transfers control
to the proper servicing program;

(4) provides error messages and executes a specified recovery procedure
whenever an execution error occurs.

In addition, the system provides an extensive set of subroutines for simplified
control of the process input/output hardware. Many of the TSX functions may be
referenced explicitly from users’ FORTRAN programs. The most important of these
are listed in a simplified form in Table I, to illustrate the facilities already available
in TSX.

When the IBM 1800 is operating under TSX, the core memory is divided logically
into two sections, called skeleton and variable core. The skeleton contains the
portions of the operating system which must be permanently available, those
interrupt subprograms which may be time-shared with the mainline program and
a skeleton COMMON area. Variable core is used for the job-stream of mainline

1 48 interrupt terminals distributed among 8 levels would be adequate.

TIME-SHARING LABORATORY AUTOMATION 261

programs. Interrupts are processed either by the skeleton interrupt routines,
without overwriting variable memory, or by temporarily replacing the current
mainline program with an interrupt core-load.

TABLE I

TSX &BROUTTNES WHICH MAY BEREFERRNCED FROM APPLICATIONS PROGRAMS

CHAIN (NAME)

QUEUE (NAME, P)

VIAQ

LEVEL (I)

INTEX

TIMER (SUB, I, J)

CLOCK Q

SHARE (I)

ENDTS

AIS (I, J)”

DO (I, 9”

DAC (I, J)

DI (I, J)”

The program “NAME” is loaded and executed.

The program “NAME” is entered into the process job stream queue
with priority P for future execution,

The highest priority program in the queue is loaded and executed.

An interrupt at level I is entered.

In an interrupt servicing program, completion of the service is
recorded.

After the timer “I” has run “J” intervals, the subprogram “SUB”
is executed.

The real time “I” is recorded.

Devote an interval “I” to the nonprocess job stream.

Terminate action in the nonprocess job stream at once.

Analog input several points sequentially.

Digital output to several addresses.

Analog output to several addresses.

Digital input from several addresses.

(i Here “I” is a control parameter, and “7 is an array containing the input or output addresses
and the data transmitted.

THE LABORATORY AUTOMATION SUBMONITOR

The primary functions of a computer monitor program, supervision of priorities
and sequencing of programs, and provision of assemblers, compilers, and program
loaders, are adequately met by the TSX monitor. In addition, a special-purpose
monitor should provide flexible input/output control programs and a powerful
subroutine library appropriate to the problems anticipated. It is extremely
important that the subroutines be both flexible and easy to use if most of the users
are scientists with limited experience and less interest in programming. This paper
deals most particularly with the data-collection functions of the nucleus of a new
laboratory automation monitor with only limited discussion of the subprogram
library which has been and is being prepared in this laboratory.

262 GLADNEY

Four important programming principles--dynamic allocation, preservation of a
status record for each time-shared program, concatenation, and modularity of
tasks-are fundamental to the input/output routines described below and are
extremely useful guides in the related programming to be done by individual users.
First of all, there must be a dynamic allocation algorithm for those computer
resources that are in short supply. Timers, core buffers, and disk record buffers
are allocated on request and made available for future requests as soon as possible
after the completion of a timed input/output sequence in the monitor described
here. The allocation of each of these facilities is maintained in a small data array
in the skeleton area of core storage. The logic of these arrays is indicated in lines
78 to 111 of Fig. 1. The subroutine which collects the data for multiple experiments
must remember the current status of each collection cycle. These records
are maintained in the COMMON region denoted at the bottom of the
figure.

Without a detailed knowledge of each experiment, it is not possible to fix in
advance the sequence of operations required, the timing or number of accesses
to the experiment, or a number of other parameters associated with any access to
an experiment. However, one can easily identify the small number of operational
modules from which, if concatenation of modules is allowed, sufficiently flexible
strings can be constructed to satisfy quite complicated sequences of input/ouput
operations. In fact, such a logical structure is very similar to modern techniques in
analog logical circuitry, in which a relatively small number of operational units
(adders, integraters, multiplying circuits) are hooked up to provide more compli-
cated transfer functions. The design of digital computers itself uses the same
principles of modularity and concatenation. The modularity confers the additional
advantage that, should the program not provide some necessary function, it is
quite easy to add appropriate modules. In Fig. 1, lines 31-72, some of the modular
elements are identified. The first group of elements provides the facility to sweep
a set of independent variables with equal increments. The second set permits
output from tabular data prepared before the initiation of an I/O cycle. Operation
8 is designed to reset a motor equipped with a sensing potentiometer with the
computer closing the servomechanism loop. Operations 9 and 10 provide for analog
input, with and without time-averaging [11. The next group of operations is provided
to supplement the time-averaging data collection by allowing an output variable
to be incremented only after a specified number of data points have been collected.
The final operation provides an interval timer to give precise sampling intervals
to experiments in real time.

The core of the laboratory automation sub-monitor is a set of four programs
operating within TSX. The central routine, DO10 (Do Input/Output), is a skeleton
subprogram entered when a timer or timers expire and accomplishing a series of
process input/output operations determined by a command string stored in the

L...
C...
C...

C...
c...
C...
C...
C...
L...
C...

c...
L...
C...
C...
C...
C...

k::
C...
t...
C...
c...

C...
C...
L...
C...
c...
L...
L...

FIG. 1

264 GLADNEY

skeleton common area of the main computer memory. Subroutine TIMR, also
stored in the skeleton area, uses one of the hardware timers to provide DO10 with
multiple software timers. Each software timer may be set to expire at integral
multiples of the basic timing interval, 50 msec. Subprogram IN10 (Initiate Input/
Output) is automatically loaded with the user’s mainline program. It provides a
very simple interface to initiate DOIO, assigns a timer and buffers as necessary,
checks the validity of the input data, and stores in the skeleton common area the
data required by DOIO. The final routine, EXIO (Exit from Input/Output),
terminates any I/O sequence gracefully, releases the timer and buffers associated
for use by subsequent requests for service, and enters into the process job stream
queue a user’s program which presumably interprets and outputs the data collected.
In these programs the primary identifier of the tasks to be done when any software
timer expires is the software timer number itself. Associated with each timer is a
short memory block in the skeleton area. This block contains a fifteen-word

Ddsrmlnr oprotion,

Input
4

If thb core buffer Is full,
writs It Into dltk buffer

I

I output
4

If the EWI buftw IS doplated.
read o new dhk buffer n-
cord

I-rItl

I-3?

Yes

FIG. 2. Simplified logical flow for DO10 (Skeleton interrupt subroutine servicing programmed
interrupt level 12) DO10 is entered when one or more timers expire.

TIME-SHARING LABORATORY AUTOMATION 265

command string, a fifteen-word device-address and direct-data table, and a two-
word identification of the program to be queued at the end of the cycle. In addition,
a nine-word table is used to associate memory and disc storage buffers with the
timer and to maintain a current status record of the data being processed by the
buffer. Simplified flow charts of the four programs appear in Figs. 2-5. Details of
the input data for the initiation program occur in Fig. 1.

Entry

FIG. 3. Logical flow for TIMR (Skeleton subroutine at interrupt priority level 0) TIMR
is entered whenever the l-msec hardware timer expires.

Besides the repetitive timed I/O package, the submonitor includes a set of quite
simple programs to permit forced changes in program sequencing from the com-
puter console. Normally, the sequencing is entirely automatic; at the completion
of any mainline program the next one in the program queue is initiated. If there is
no process program in the queue, a few minutes is devoted to the nonprocess
jobstream. However, from the console we may start interrupt programs which:

(1) abort the present nonprocess job in favor of the next nonprocess job;

(2) terminate nonprocess work immediately;

(3) devote a few minutes, starting at the completion of the current process
job, to nonprocess work; or

(4) enter into the process job-stream queue a desired program with a desired
priority,

Of course, whenever either process or nonprocess work is forcibly terminated, its
current status is saved in disk storage, so that it can be resumed later.

266 GLADNEY

Type eurnnt tlmc. timer number and In-

Fl
+wyo+ and cych data Into computer log

FIG. 4. Simplified logical flow for IN10 (Subprogram loaded with program in variable
core).

TIME-SHARING LABORATORY AUTOMATION 267

completed Its function

If none
cali INTEX

Type into computer log completion
tlms, termination servicing time and
idantificoticn of the exit procedure

1
Empty any input buffers of final
tronsminslon

1
Transfer input data from disk buffers
to user’s personal disk oreo

1
Release I/O buffers

Release software timer I

1
Enter ths required proces(~ core-
load into the job-streamqueue

Check for abnormal trrmlnotlon of
timed I/O sequence

I-

FIG. 5. Simplified logic flow for EXIO (Interrupt core load servicing programmed interrupt
level 22) EXIO is entered when one or more repetitive timed I/O sequences is complete.

A USER'S PROGRAM

As an example of an application of this time-sharing monitor system, we present
drastically simplified logical flow charts of programs to accomplish the tedious
initial phases of data collection for electron paramagnetic resonance (EPR) of
magnetic centers in single crystal samples. These preliminary experiments are
performed to ascertain whether or not a sample has a magnetic impurity and to
determine the chemical nature and location of the magnetic site by observation of
the angular dependence of line positions. As it has been performed manually in
the past, a typical experiment involves a hundred or more sweeps of 10-30 minute
duration each, with detection time constants of the order of one second. Between
sweeps it is often necessary to adjust the controls of the output detector circuits
or to change the orientation of the applied magnetic field. Single crystals seem to

268 GLADNEY

accept desired magnetic dopants only reluctantly, so that a negative experiment is
more common than a positive one. We seek to escape these uninteresting phases
of the researches. Since only rudimentary feedback from the results is involved in
adjusting the detector, this problem was one for which significant effort could be
saved without elaborate programming. Much more significant than the extra ease
of the experiment is that the computer makes it possible to maintain a uniformly
high-quality experiment with more complete records than have been common in
the past.

The interface between the spectrometer and the computer is relatively simple
compared to the large number of controls available on the spectrometer. It includes
all those signals and controls which are commonly modified during the course of an
experiment to present and optimize the output data. These include digital control
of the magnetic field, analog sensing of the output of a phase-sensitive detector,
digital control of the gain, time constant and modulation amplitude of the same
detector, a positioning mechanism for a 12-in. rotating electromagnet, and analog
outputs to an X-Y recorder in the laboratory. Most of these controls are used in
the simple search for signals, but we anticipate that they are also adequate
for some of the more sophisticated control programs planned for the
future.

The organization of this user’s program is quite similar to that of the laboratory
automation submonitor itself. The tasks to be performed include data-collection
cycles carried out by DOIO. During these it is unnecessary that the main program
be resident in variable core. Consequently all data and control arrays are not
presumed to be saved in core memory but are stored in disk files, and the program
uses variable core only during its data-processing phases. For this program the
command string is conveniently read from a set of input cards. Since it is not possi-
ble to predict when the next elements of the command string may be required,
the entire string is stored in disk storage by an initiation program which is completed
before the first task is undertaken. The initiation program (Fig. 6) provides the
additional opportunity of generation of a relatively long command string from a
compact set of data entered in a format convenient to the experimenter. For the EPR
spectrometer a typical data input deck has 12 cards which generate commands
for 48 hours of searches for spectra.

A more detailed description of the EPR system will be deferred for future publica-
tion. In its present form, the program (Fig. 7) includes modules to reset the magnetic
field, to record a spectrum with or without time-averaging, to plot a spectrum, to
adjust for base-line drift, to locate absorption lines, to readjust the detector
circuits on the basis of previous results, and to set the magnetic field direction.
Of course, this program is open-ended so that other modules of instructions may
be added if and when desired. Consequently it could, mutatis mutandis, control
spectroscopic experiments other than electron paramagnetic resonance.

TIME-SHARING LABORATORY AUTOMATION 269

Entry

4
Set up tab40 Of multiplexer
oddrasser

4
Rood from cords - title, angles,
field valuec, detector settings

1
Read task string

I
No Am Input data valid P

1
YW

Start loop on number of angles

4
Start loop on number of tasks

4
Enter task code into control array

1
Write to disk a pornmater string
opprcfwiote to current task

NO
1

Lost tank P

1 Call doto-goth;rr;;rogrom)

Entry

,+,

I Decode next task I

Read appropriate
parameter string
from disk

1
4 data wllscflon or
timed control task ?

FIG. 6 (left). Logic flow for EPR preliminary data collection initiation.
FIG. 7 (right). Logic flow for EPR preliminary data collection execution.

A COMPARISON

It is pertinent to compare the present system to an extant time-sharing laboratory
monitor. This is much to indicate the similarities of these systems, which may be
characteristic of many of the systems which will be designed in the near future, as
to illuminate the significant differences. Beaucage et al. [2] have described a time-
sharing monitor implemented on an SDS 920 for the control of multiple neutron-
diffraction spectrometers at Brookhaven National Laboratory. The most striking

270 GLADNEY

change in the present system, that the individual experiments are multifarious, is
quite superfical from the point of view of the computer since, given programming
with the flexibility of a modular system, all the experiments we have considered
are very similar. However, most of our applications are for instruments with the
data characteristics of a scanning spectrometer, which are very different from those
of crystal-diffraction spectrometers. The latter were, even before the impact of
digital computation, intrinsically digital devices, whose data handling requirements
may be contrasted with the requirements described in the second section of this
paper. The primary scaling in a neutron-diffraction spectrometer is done in a counter
external to the computer, so that the time scale for transferring data can be measur-
ed in seconds or longer, rather than in fractions of a second. However, when a
“point” (angles plus count) has been collected, it is usually necessary to perform
some short computations before resumption of the experiment. The total data
transmitted to or from the experiment is measured in hundreds or thousands of
words, rather than the tens or hundreds of thousands of words transmitted by an
EPR spectrometer. Consequently, in the system at Brookhaven, interrupts asso-
ciated with data transfer generally originate in the experiment. At San Jose, since
it is not common that much control action need be taken before a file of data are
collected, timed interrupts become normal and externally generated interrupts the
exception rather than the rule. At the present our external interrupts are usually
associated with programs that require core-load interchanges which may themselves
take of the order of a second to perform. The timed interrupts originate in a timer
internal to the computer. Should it prove necessary, it would be quite simple to
replace one or more of these with external interrupts, which could either be external
timer(s) or other device(s), so that to make this system operate in a similar
fashion to that at Brookhaven would be quite feasible, although perhaps not very
efficient.

The sequencing between data reduction tasks is quite different in the two systems.
The Brookhaven facility sequences between main-line programs by polling. Since
the polling operation itself is quite fast, it is probably not significantly different in
practice from the more sophisticated queuing operation provided by TSX as far
as the efficiency of the computer is concerned. It does not, however, provide a
priority scheme for main-line core loads, which may not be a serious deficiency
for experiments as similar as the ones at Brookhaven, but is an undesirable
restriction in the environment of San Jose. The limitation of 30 seconds for each
user program is quite intolerable at San Jose (e.g., to plot, with axes and labels,
a large data file might take 5 minutes). A most important feature of the priority
queuing system is that we are able to provide a researcher who wishes to run a
nonprocess calculation from the console with a very high priority, on the assump-
tion that his time is more valuable than that of a laboratory instrument which may
be running untended. While he may be engaged in debugging a new program in the

TIME-SHARING LABORATORY AUTOMATION 271

foreground, all those data-collection and control functions which have been
started will continue in the background, but the intervening data-reduction
programs will be delayed until the programmer no longer requires operations at
the console. Alternatively, if any experiment requires data-reduction and initiation
of new data-collection phases with priority exceeding that of console operation,
this type of service can be provided with an interrupt core-load.

In two respects the computer hardware described by Beaucage seems inadequate
for the control of multiple scanning spectrometers. The core memory and drum
storage allocation for each experiment is roughly what we require for a single
spectral scan. The price of the ease and flexibility of FORTRAN programming is that
the programs tend to become quite bulky, both because of compiler inefficiency
and because we become more elaborate with easier programming. Our monitor
system is designed to run with a two-disk system, so that we will have a million
words of pseudo-random access memory available for programs and temporary
data files. We plan to handle large permanent files either by transferring them to
an IBM 360/50 via a channel-to-channel adapter or by transferring them to a
temporarily mounted third disk, at the option of the experimenter. Because
many of the programs servicing interrupts are much more extensive than those
described by Beaucage, they necessarily contain output messages, so that we find
it necessary to provide, as well as the line printer, multiple output typewriters.
While these are relatively slow, they are inexpensive and may be placed in the
laboratories, which are as far as 500 feet from the computer.

DISCUSSION

A laboratory automation monitor system which provides a powerful timed data-
collection and control facility for multiple experiments and most of the time-sharing
bookkeeping to maintain a parallel conventional batch-processing job-stream
has been described. It has been designed primarily for experiments of the type
characterized by scanning spectrometers, which represent a large class common to
physics and chemistry. At the same time, it does not preclude that a variety of
experiments outside this explicit scope be time-shared with the other activities.
In particular, experiments with higher data rates may be handled in a burst mode.
The contrast between the sequencing method for slow experiments and that for
fast experiments is analogous to that between multiplexor and selector channels
on modern digital computers.

Inevitably, in the design of a system with the complexity of the present one, there
arise a number of alternatives whose consequences are either not clear or not very
different. As these were encountered, they were dealt with in such a manner that to

5811213-5

272 GLADNEY

interchange alternative solutions is a simple exercise. For the external interface
operations modularity combined with concatenation provides the necessary
facility. Many of the parameters of the timed I/O programs, such as the number
of timers and the number of buffers, can be easily changed. We have chosen to
enslave the experiments during their data-collection phase to timers internal to the
computer, but this choice may be replaced by data collection controlled by
interrupt signals originating at the experiment. It is not, however, possible to
guarantee to any experimentalist that his interrupt signals will be instantaneously
serviced. This possibly unpalatable restriction does not depend on the system
described above, but is an inevitable consequence of time-sharing a computer for
multiple tasks.

The advantages and difficulties of time-sharing a single computer are quite well
known. The most serious danger is that of spurious interaction between unrelated
experiments. Certain timing delays are inevitable and we expect that programming
mistakes on the part of individual experimenters will provoke heated interchanges
in the first few months of operation of our system. In any installation it is necessary
that the allocation of physical resources, e.g., data-file areas on disk, and interrupt
and queuing priorities are under the control of a single individual who can correlate
and compromise conflicting requirements. One disadvantage indicated by Beau-
cage [2], that individual spectrometers are dependent on the reliability of the
central computer, can in many cases be avoided easily by maintaining the present
stand-alone capability for the spectrometers. However, it is not unlikely that the
aid lent by computers will be so significant that experimenters gradually will
become reluctant to continue the experiment until an ailing computer is rejuvenated.
One of the most insistent arguments against time-sharing a single large facility has
been the estimate that it might take many man-years to provide the necessary
programming. With the FORTRAN compiler and the TSX monitor system already
available, the system described in this paper has required roughly two man-months
to complete.

All too often computer systems have been designed without an adequate back-
ground or understanding of the problems or systems to which they are directed.
The balance between insufficient generality and overelaborate proliferation
continues to be elusive. I have attempted to reach what I consider to be the middle
ground with a system designed neither for my own experiment alone, nor for all
experiments under all circumstances, but for the set of experiments and circum-
stances prevalent today in this laboratory. Insofar as it is typical of other labora-
tories, the system may be useful in them. Possibly the programs described here
have a range of usefulness beyond the disciplines for which they have been
provided. In any case, the programming principles that made this project so easy
and which I have attempted to identify explicitly should have a very general
applicability.

TIME-SHARING LABORATORY AUTOMATION 273

ACKNOWLEDGME~

For programming advice and patience I am indebted to Mr. Wayne Elwood and Dr. Robert
Durbeck. The advice and support of Dr. James Eaton and Dr. J. D. Swalen have been invaluable.

REFERENCES

1. For a detailed discussion of “time-averaging” to improve the signal-to-noise ratio, see
R. ERNST, Rev. Sci. Znstr. 36, 1689 (1965).

2. D. R. BEAUCAGE, M. A. KELLY, D. OPHIS, S. RANKOLVITZ, R. J. SPINRAD, and R. VAN NORTXN,
Nucl. Inst. Methods 40, 26 (1966).

